
A Diagrammatic Meta-Language for Planning
Domain Descriptions

Max GARAGNANI∗

Department of Computing, The Open University
Walton Hall, Milton Keynes MK7 6AA – U.K.

Tel. +44 (0)1908 654812 Fax. +44 (0)1908 652140
M.Garagnani@open.ac.uk

Abstract. Sentential and diagrammatic representations are two different formalisms
for describing domains and problems. Sentential descriptions are usually more expres-
sive than diagrammatic ones, but tend to present a more complex and less intuitive
notation. All modern planning domain description languages are sentential. The com-
plexity of sentential formalisms has been of hindrance to the wider dissemination and
take up of planning technology beyond the planning research community. This paper
proposes a diagrammatic “meta-language” for planning domain descriptions based on
setGraphs as an alternative to sentential languages. SetGraphs represent actions, states
and goals in terms of set- and graph-theoretic constructs. Through various practical
examples, setGraphs are shown to yield simpler and more intuitive domain encodings,
and to offer a high degree of elaboration tolerance. A theoretical analysis shows how
the representation can be easily encoded using formal languages, and demonstrates
that setGraphs are at least as expressive as a standard modern propositional planning
domain description language. The model proposed constitutes a “core” representation
that can be adopted as a basis for developing different planning domain description
languages; it is suitable to be used across different levels of abstraction during the
processes of language development and domain knowledge engineering, and it facili-
tates the elicitation, maintenance and re-use of planning domain descriptions.

1 Introduction

During the past few years, research in AI planning has reached a stage of maturity that should
have resulted in wide industrial and commercial take up. However, this has not generally
happened. One of the causes of the gap between theory and applications lies in the fact that
the remarkable capabilities of modern planning technology (and, perhaps, even the existence
of the technology itself) are still largely ignored outside the planning community. This is not
hard to believe, given the relatively young age of the field and the speed at which it has been
developing. Indeed, many AI researchers who are not directly involved in planning research
still consider this area as mostly concerned with STRIPS-like systems and problems.

In order for planning technology to find wider application, more awareness and a clearer
understanding of what planning currently is and what it has to offer are required. The rather
specialist, logic-based notation that all modern domain description languages adopt appears

∗The author wishes to thank the UK EPSRC for the support given to this research (grant ref. GR/R53432/01).

to be one of the major obstacles to the technology dissemination and take up, particularly in
non-academic environments. In fact, although AI practitioners are (usually) familiar with the
concepts of states and goals and are well versed in predicate logic, potential users, knowl-
edge engineers and domain experts tend to be discouraged when presented with the latest
BNF formalisation of PDDL [12], and when required to express their problem in such terms.
Paradoxically, in several cases PDDL still fails to offer the flexibility and expressiveness that
is needed to accurately and completely describe the real problem at hand anyway.

In order to allow planning and non-planning experts to more easily represent, commu-
nicate and modify planning domain descriptions, we propose a diagrammatic (or analogi-
cal [13]) formalism based on the model of setGraph [4, 6, 5]. SetGraphs represent states,
goals and actions in terms of directed graphs in which the vertices are sets of symbols.
SetGraphs were introduced in [4] as a simpler and more efficient alternative to traditional,
pervasive, sentential domain description languages. SetGraphs representations can be easily
translated into more formal domain description languages. Furthermore, preliminary experi-
mental evidence [6] suggests that planning problems represented in diagrammatic terms can
be solved much faster (up to two orders of magnitude) than when described using a purely
sentential language. This paper argues that setGraphs also yield simpler and more intuitive
(yet flexible) domain descriptions, which can be more easily and quickly understood by non-
planning experts and facilitate the process of domain knowledge engineering.

The paper is organised as follows: Section 2 introduces the main ideas behind setGraphs
through simple examples; Section 3 presents setGraphs in more precise and formal terms,
introducing numeric values in the model; in Section 4, setGraphs are proven to be expres-
sively equivalent to a simplified version of the standard planning domain description language
PDDL. Related work, limitations and future directions are discussed in the last section.

Before proceeding any further, it should be clarified that setGraphs are not claimed here
to be “the” universal language which is fit for all application domains. Adopting the same
view of Frank, Golden and Jonsson [3], we propose setGraphs as a common “core” repre-
sentation for use in many planning domain description languages, sufficiently expressive for
most simple, well-defined, problems, and easy to be extended to meet the different require-
ments of the various real-world situations. In addition, it should be pointed out that this paper
is not concerned with the definition of a specific language for the computational encoding
of the proposed diagrammatic representation. The representation described here constitutes a
“meta-language”, aimed at facilitating the processes of domain description language devel-
opment and knowledge engineering, including domain knowledge elicitation, representation,
modification and re-use. The task of specifying the actual syntax of a domain description
language based on setGraphs, although relatively straighforward (setGraphs are built using
basic concepts of set and graph theory), does not fall within the scope of this work1.

2 A gentle introduction to SetGraphs

We start with a very simple representation, which is then progressively augmented with ad-
ditional features. The formal description of the formalism is given in the next section.

A setGraph is essentially a directed graph in which the vertices are sets of symbols. For
example, Figure 1.(a) shows a setGraph description of a Blocks World (BW) state with three

1However, see [6] for an example of BNF formalisation of a simple language based on a restricted version
of the setGraph model.

P

E

(a) (b)

V10

V3

V2

V1

V8

V7

V9V6

V5

V4

Table

A B

C z

z

x

y

x
y

Figure 1: A SetGraph encoding of the Blocks World domain: (a) state representation; (b) Move(x, y, z) operator
(where x ∈ {A, B, C} and y, z ∈ {A, B, C, Table}).

blocks and a table, represented by symbols ‘A’, ‘B’,‘C’, ‘Table’. The vertices of the graph
are depicted as ovals, labelled V1, . . . ,V10. In this example, the edges of the graph (arcs)
represent ‘on’ relations between spatial locations: if a vertex containing symbol x is linked to
a vertex containing symbol y, then On(x, y) holds in the current state.

The symbols of a setGraph can be moved from one vertex (set) to any other through the
application of diagrammatic operators, which specify the set of legal transformations of a
state (setGraph). Figure 1.(b) depicts the Move operator for the BW domain. The operator
preconditions P describe a specific arrangement of symbols in a part (sub-graph) of the cur-
rent state; the effects E describe the arrangement of these symbols in the same sub-graph
after the application of the operator. Intuitively, an operator P ⇒ E is applicable in a state
s iff each of the graphs contained in P can “overlap” with (be mapped to) a sub-graph of
s having the same “structure”, so that each variable corresponds to a distinct symbol, each
vertex to a vertex, each edge to an edge, and: (1) if a variable is contained in a set (ver-
tex), the corresponding symbol is contained in the corresponding set; (2) if an edge links
two vertices, the corresponding edge links the corresponding sets; and (3) if a set is empty,
the corresponding image is empty. When all of these conditions hold, we will say that the
precondition setGraphs are satisfied in s. Notice that the variables can be of specific types,
subsets of the universe of symbols. For example, variable x of the Move(x, y, z) operator has
type Block={A, B, C}, while y, z ∈ Object={A, B, C, Table}. Thus, this operator encodes the
movement of a block x from its current location to a new one, originally empty, situated “on
top” of a set containing another block (or the table) y. Notice that the operator is applicable
only if block x has an empty set on top of it (i.e., if x is clear).

The application of an operator to a state s causes the corresponding symbols in s to be re-
arranged according to the situation described in the effects E. For example, the Move(x, y, z)
operator can be applied to the state of Figure 1.(a) in several ways. One possible binding is
x/C, y/Table, z/A; the application of Move(C,Table,A) would unstack block C from A and
put it on the table (i.e., in set V9 of Figure 1).

This simple representation can be easily extended with additional features. The following
example illustrates the use of typed and symbol-to-symbol edges in setGraphs; in the next

Table

A B

C

P

E

(a) (b)

x

Table

x Table

 y

 y

Figure 2: A richer diagrammatic model of BW: (a) current state; (b) Unstack(x, y) operator. Bold, thin and
dashed arcs indicate, respectively, ‘on’, ‘above’ and ‘heavier’ relations (see Example 1 for details).

section, symbol-vertex edges and numeric quantities will be introduced. As discussed later,
the addition of these features makes the formalism significantly more expressive.

Example 1 - Consider a variation of BW in which blocks have a specific weight, and the
stacks are such that a block can be removed from the top only if the stack contains at least
another block which is heavier than the one being removed. In order to encode this domain,
two additional relations between objects (namely, the relation ‘heavier’ and ‘above’ between
blocks) have to be represented. One possible way to obtain this is to introduce typed edges.
Figure 2.(a) depicts different types of edges using different styles of arcs (although labelled
arcs could also have been used). The state representation contains two new types of edges,
identified by thin and dashed arcs. A thin arc linking a vertex containing symbol x to one
containing symbol y denotes that block x is the n-th block above y (with n > 1); a dashed
arrow linking symbol x to symbol y indicates that block x is heavier than block y. Figure 2.(b)
depicts the diagrammatic version of the Unstack(x, y) operator (the Stack(x, y) operator is
identical to the Move(x, y, z) operator of Figure 1.(b) with z=Table). The preconditions P
require the existence of a block y such that both Heavier(y, x) and Above(x, y, n) hold.
The effects E encode the new position of block x, now located on the table. We assume that
when a symbol is moved, all arcs connected to it move with it.

Notice that the number of edges needed in a setGraph to represent relations between objects
(like ‘above’ or ‘heavier’) grows only polynomially in the number of objects of the domain.
Another interesting property of diagrammatic representations is that they allow the spatial
relations existing between the “mobile” objects of a domain to be represented as static (or
invariant) elements of the description, whenever the set of possible positions in which such
objects can be (relatively to each other) is finite and predetermined. For example, it is easy to
see that all the edges of the setGraph of Figure 2.(a) (including all those representing spatial
relations between blocks) are static and remain unchanged throughout any plan execution, as
they are not affected by any of the actions. Interestingly, this encoding could have been also
“emulated” using a propositional language description. For example, if the vertices of the
setGraph of Figure 2.(a) were considered as entities of the domain, then the BW state could

be described also as follows:

I = { On(V1,V2), On(V2,V3), On(V3,Table), . . . ,On(V9,Table),
Above(V1,V3), Above(V2,Table), . . . , Above(V7,Table),
Heavier(A,B), Heavier(B,C), Heavier(A,C),
In(C,V2), In(A,V3), In(B,V6),
Empty(V1), Empty(V4), Empty(V5), . . . , Empty(V9) }

Predicate In(x, y) indicates that symbol x is inside vertex y; Empty(x) indicates that
vertex x contains no symbols; On(x, y), Above(x, y) and Heavier(x, y) denote the
corresponding edges between vertices and symbols. Observe that in the state representation
I , only the instances of the predicates In(x, y) and Empty(x) are subject to change; the
rest of the literals are static. Notice that, although obtaining this propositional encoding from
Figure 2.(a) appears to be a straightforward task, no planner would have been able to auto-
matically generate state I from the original, propositional description of the BW domain.

Whilst this graph-based notation is capable to encode most of the “classical” benchmark
domains, a more expressive formalism is required for most real-world domains. The next sec-
tion contains a more precise and formal definition of setGraphs, in which the representation
is further extended with numeric quantities and actions involving not only the movement (or
removal) of symbols but also of vertices. As pointed out earlier, however, the main aim of this
paper is not to build a domain description language suitable for encoding all possible real do-
mains, but rather to introduce a common core, simple and intuitive diagrammatic formalism,
easy to understand and use, which can be easily extended with additional features according
to the different requirements of the situation. In view of this, the description of the model has
been kept intentionally abstract and stripped of any low-level syntactical detail, so as to avoid
committing the representation to any particular language or paradigm.

3 Formalising setGraphs

In order to formally define a setGraph, let us introduce the collection construct. A collection
is a data structure identical to a list, except that the order of the elements is unimportant.
Equivalently, a collection can be seen as a set in which multiple occurrences of the same ele-
ment are permitted. Notice that the multiple instances of an element should be thought of as
distinct elements of the structure. For example, C={1,1,0,0,0} denotes a collection of integers
containing two occurrences of the number 1 and three occurrences of the number 0. Since the
order is unimportant, any permutation of the elements of C is equivalent to the same collec-
tion. Hence, C={1,0,1,0,0}={1,0,0,1,0}={1,0,0,0,1}={0,1,0,1,0}=. . . . The empty collection
is denoted as { }. We will write “x ∈ C” and say that x is contained in C to indicate that
element x appears (occurs) at least once in collection C.

The definition of a setGraph is based on that of nodeSet, specified recursively as follows:

Definition 1 (nodeSet, node, place). Let W be a set of symbols (language). A nodeSet is
either:

• a symbol w ∈ W (in which case a nodeSet is also a ‘node’), or

• a finite collection of nodeSets (in which case a nodeSet is also a ‘place’).

 y

x

(a)

0

3

3

4
v1

 v2

(> (y v2) v1)
(increase v2 v1)
(assign v1 0)

(b)

 y

x

 v1

 v2

Figure 3: A diagrammatic model of the Water Jug domain: (a) initial state; (b) Pour operator.

A node is a symbol (string) of the language. A place is a “container” for both nodes and
places. Nodes and places are nodeSets. In short, nodeSets are data structures consisting of
multi-nested sets of symbols (strings) with multiply occurring elements and no limit on the
level of nesting. Places can be labelled (possibly with identical labels). Given a nodeSet N ,
℘(N) is defined as the collection of all the nodeSets occurring in N (including N itself). For
example, consider a language W={A,B,C}. Let N1 be the nodeSet {A, {B}, {{C}}}. Then,
℘(N1)= {A, B, C, P0, P1, P2, P3}, where P0 = N1, P1 = {B}, P2 = {{C}} and P3 = {C}.

Definition 2 (setgraph). A setGraph is a pair 〈N, E〉, where N is a nodeSet and E =
{E1, . . . , Ek} is a finite set of binary relations on ℘(N) (i.e.,Ei⊆ ℘(N)×℘(N), i∈{1, ...k}).

If E contains only one relation E′, we shall simply write 〈N, E′〉 instead of 〈N, {E ′}〉. For
example, let N1 be the nodeSet N1={A,{B},{{C}}}. The pair α = 〈N1, E1〉 is a setGraph,
where E1={(C, B), ({B}, {{C}}), ({A,{B},{{C}}}, A)}. The instances of the binary relation
E1, pairs of elements of ℘(N1), are the edges of the setGraph. Notice that if N1 is specified
using the notation N1=P0{A, P1{B}, P2{P3{C}}} in which all places are labelled, then E1

can be specified simply as {(C, B), (P1, P2), (P0, A)} (refer to the previous example).
A complete treatment of the setGraph representation lies outside the scope of this paper,

and can be found in [5]. The above description, however, illustrates how setGraph models can
be easily formalised using set- and graph-theoretic constructs.

3.1 Actions with numeric and non-conservative effects

The simple planning operators introduced in Section 2 were limited to the movement of nodes
from one place to another. Let us now augment the representation so as to allow the descrip-
tion of actions containing numeric preconditions and effects, and involving the movement,
addition to, or removal from the setGraph of any element (nodeSet or edge).

Numbers are represented in setGraphs as numeric nodes. A numeric node is a string (sym-
bol) of W of form n.m or n (possibly preceded by + or −), where n, m denote sequences
of digits. Operators preconditions and effects will consist of two separate parts, diagram-
matic and numerical. The diagrammatic preconditions and effects are lists of parameterised
setGraphs. The numerical preconditions consist of a set of comparisons (<, >, =,≤,≥, �=)
between pairs of numerical expressions. Numeric expressions are built from the values of
numeric nodes using arithmetic operators. Numeric effects can make use of a set of assign-
ment operations that update the values of a numeric node; these include direct assignment
and relative assignments (such as increase and decrease – see Figure 3 and example below).

(define (domain jug-pouring)
(:requirements :typing :fluents)
(:types jug)
(:functions

(amount ?j - jug)
(capacity ?j - jug))

(:action pour
:parameters (?jug1 ?jug2 - jug)
:precondition (>= (- (capacity ?jug2) (amount ?jug2))
(amount ?jug1))
:effect (and (assign (amount ?jug1) 0)

(increase (amount ?jug2) (amount ?jug1)))
)

)

Figure 4: PDDL2.1 encoding of the Water Jug problem (from [2]).

The possible setGraph transformations considered here are: (i) addition or removal of a
node, place or edge, (ii) movement of a nodeSet, and (iii) update of a numeric node. The
movement and removal of elements in a setGraph is based on the following general rules:
(1) if a node is moved (removed), all edges linked to it move (are removed) with it; (2) if a
place is moved (removed), all the elements contained in it and all edges linked to it move (are
removed) with it. Any element not moved, removed or updated is left unaltered.2

Example 2 - In the well-known Water-Jug domain, the action Pour allows the water in one
jug to be emptied into a second jug, provided that the capacity of the second jug is suffi-
ciently large to hold the total volume of water currently present in the two jugs. One possible
way to describe this domain using setGraphs consists of considering each jug as a place, as-
sociated to (i.e., linked by an edge to) a numeric node. The value of the node denotes that
jug’s capacity. Each jug will also contain a numeric node, representing the current volume of
water in it. Figure 3.(a) encodes a possible initial state for this problem, in which two jugs
of capacity 3 and 4 contain, respectively, 3 and 0 units of water. Figure 3.(b) encodes the
Pour operator. This action has no effect on the arrangement of the nodes and places in the
setGraph, as it only updates the numeric values of nodes v1 and v2. Figure 4 contains the
sentential description of the Water-Jug domain, expressed in PDDL2.1 style [2]. When com-
pared to sentential descriptions, diagrammatic representations appear to be simpler and more
natural, less error-prone and easier to modify and re-use. As demonstrated in the next sec-
tion, setGraph representations are also at least as expressive as modern propositional planning
domain description languages.

4 Expressiveness of setGraphs

The expressiveness of setGraphs is assessed by comparing the representation against a propo-
sitional formalism that allows the use of numeric quantities and functor symbols. In particular,

2Movement and removal of elements in the i-th setGraph Gi of the preconditions P are encoded implicitly
by the i-th setGraph G′

i of the effects E. The different nodeSets of Gi and their (possibly new) positions are
identified in G′

i using the same identifiers that those elements have in Gi. However, since addition of elements
is permitted, G′

i might also contain new nodeSets (associated to labels or values that do not appear in Gi) or
new edges. Similarly, since removal is permitted, Gi might contain nodeSets or edges that do not appear in G′

i.

we adopt the same semantic model adopted in PDDL2.1 [2]. In short, the PDDL2.1 semantics
is based on the idea of a state being composed of two separate parts, a logical state and a nu-
meric state. While a logical state L consists of a set (conjunction) of ground atomic formulæ
(the truth of an atom p depending on whether p ∈ L), the numeric state consists of a (finite)
vector R of values in 	⊥ = 	 ∪ {⊥}, representing the complete set of primitive numeric ex-
pressions (PNEs) of the problem (values associated with tuples of domain objects by domain
functions – see [2] for a more detailed explanation). An operator specifies a transformation
of a state-pair s = (L, R) into a new state-pair s′ = (L′, R′). In this analysis we consider
ground (i.e., instantiated) operators of form (P ⇒ E), in which the preconditions P con-
tain a list of ground literals and a set of comparisons between pairs of numeric expressions
(containing PNEs and numbers), while the effects E consist of list of ground literals and a
set of numeric update operations (analogous to those adopted in setGraphs). Notice that any
PDDL2.1 (“level 2”, i.e., non-durative) action schema can be compiled into an equivalent set
of (ground) operators of the above form [2].

The two main results concerning the expressiveness of setGraphs are presented below:

Theorem 1 (Expressiveness). Every propositional (PDDL2.1) state s = (L, R) can be rep-
resented as a setGraph.

Proof Every state s = (L, R) consists of a finite set L of ground atoms p(x1, . . . , xn) and
a finite vector R of values yj , each one representing the value in s of the j-th primitive
numeric expression f(x1, . . . , xm) (where the xi are constant symbols representing the ob-
jects of the domain). Let G be a setGraph containing the following: (1) three places, la-
belled Pred, Obj and Funct; (2) a node “c” in Obj for each symbol c ∈ C; (3) a node “p”
in Pred and a set of labelled edges {e1(p, x1), . . . , en(p, xn)} for each atom p(x1, . . . , xn)
of L; and (4) a node “f” for each functor symbol f and a set of nodes {x1, . . . , xm, yj}
in Funct linked by a set of edges {(f, x1), (x1, x2), . . . , (xm, yj)} for each value yj of R.
Then, the truth of an atom p(x1, . . . , xn) can be determined by checking if the setGraph
〈{Pred{p, x1, . . . , xn}}, {e1(p, x1), . . . , en(p, xn)}〉 is satisfied in G. In addition, the value
of the j-th PNE is identified by the value to which the numeric variable w ∈ 	⊥ has to be
bound for the parameterised setGraph 〈{f, x1, . . . , xn, w}, {(f, x1), (x1, x2), . . . , (xm, w)}〉
to be satisfied in G. Q.E.D.

Corollary Every ground propositional (PDDL2.1, level 2) operator can be transformed into
an equivalent setGraph operator.

Proof sketch Given the encoding used in the proof of the above theorem, every sentential
operator can be transformed into an equivalent setGraph operator as follows: each addition
(removal) of an atom p(x1, . . . , xn) to (from) the logical state L corresponds to the addition
(removal) of the corresponding node “p” and associated edges to (from) place Pred. Similarly,
each update of a PNE f(x1, . . . , xm) in R is encoded through the update of the numeric node
w at the end of the chain (f, x1), (x1, x2), . . . , (xm, w). Q.E.D.

Notice that the transformation of sentential descriptions into setGraph models is polynomial
(while the size of the result is linear) in the size of the original encoding3.

3The measure of this size includes the size of R and the arity of the PNEs and predicates of the language.

5 Related work and Discussion

The aim of this paper was to propose a diagrammatic meta-language for planning domain
descriptions, which would facilitate the process of language development and domain knowl-
edge engineering. The examples illustrated that setGraphs produce simpler and more intu-
itive domain descriptions, easier to understand for non-planning experts. This should allow
researchers and practitioners outside the planning community to better understand modern
planning technology, facilitating its dissemination and take-up, and hence reducing the exist-
ing gap between theory and real-world applications. At the same time, the setGraph formal-
ism described was proven to be at least as expressive as a propositional language that allows
the use of numeric quantities and functor symbols, and to be easily modelled using more
formal, set- and graph-theoretic constructs. These characteristics make the model suitable to
be used across different levels of abstraction (e.g., as a tool for knowledge elicitation and
exchange between planning experts and domain experts, or, alternatively, as a basis for do-
main description language development). In particular, setGraphs can be used as a common
core representation – in other words, as an underlying “platform” – for the development of
different domain description languages having different syntax and/or additional components
(see the requirements for a core language proposed by Frank et al. in [3]).

In terms of flexibility and capability to undergo extensions, setGraphs display a high de-
gree of elaboration tolerance. This was illustrated, for example, when a new, revised version
of the BW domain was introduced (Figure 2): the setGraph representation used to encode the
new domain completely subsumed and re-used the encoding adopted for the original version
(Figure 1). In other words, the additional requirements (relationships ‘heavier’ and ‘above’
between blocks) simply led to the old representation being augmented with new elements.

The use of models that reflect the spatial and topological aspects of the real domain sug-
gests that this type of representation should also better support common-sense reasoning,
abstraction, heuristic extraction and learning techniques. In fact, observe, for example, that
the ability to automatically learn control knowledge through repeated problem solving in the
same domain depends heavily on the system being capable to recognise common “patterns”
and structures in different plan solutions. Consider the complexity of identifying such pat-
terns in sequences of propositional states (e.g., think of determining the existence of two
identical stacks of blocks in different BW states): sets of places and edges can be much more
efficiently compared and “overlapped” in search of the occurrence of the same pattern.

SetGraphs borrow ideas from various related works in the area of analogical represen-
tations [7, 9], qualitative reasoning [1], set and graph theory [8] and semantic networks (in
particular, conceptual graphs [14]). However, it appears that the use of diagrammatic repre-
sentations in planning had never been really investigated before. The work of Fox and Long
on generic types [11], however, fits particularly well with the present approach. Preliminary
experimental evidence (reported in [6]) indicates that problems involving the movement of
objects subject to constraints can be solved significantly faster (up to two orders of magni-
tude) when recast in diagrammatic terms. The work of Fox and Long suggests that many
domains are actually isomorphic to and can be treated as “transportation” or “construction”
problems [11]. If the dynamics a domain can be recast in terms of movement or manipulation
of objects, setGraphs and diagrammatic representations may be adopted to encode and solve
problems in this domain more efficiently.

Two important aspects of action modelling that have not been dealt with here concern the
specification of concurrent and durative (analogical) actions. A possible approach to identi-

fying non-interference conditions for the concurrent execution of setGraph operators may be
to require that the elements of the setGraph model upon which the operators act be disjoint.
However, the introduction of time and durative actions, possibly in presence of other features
– such as conditional and continuous effects – makes this a rather complex issue, requiring
further investigation.

Finally, it should be mentioned that a general theoretical framework that identifies the
conditions for the soundness of setGraph, diagrammatic and hybrid representations has been
described in [5]. These conditions extend those identified by Lifschitz in [10] for sound ac-
tion, originally limited to sentential models and still at the basis of all current sentential
planning description languages [2].

References

[1] K. Forbus. Qualitative Spatial Reasoning: Framework and Frontiers. In [7], chapter 6, pages 183–202.
1995.

[2] M. Fox and D. Long. PDDL2.1: An extension to PDDL for expressing temporal planning domains.
Journal of Artificial Intelligence Research, 20:61–124, 2003.

[3] J. Frank, K. Golden, and A. Jonsson. The loyal opposition comments on plan domain description
languages. In Proceedings of 13th International Conference on Automated Planning and Scheduling
(ICAPS’03) - Workshop on PDDL, pages 39–48, Trento, Italy, June 2003.

[4] M. Garagnani. Model-Based Planning in Physical domains using SetGraphs. In M. Bramer, A. Preece,
and F. Coenen, editors, Research and Development in Intelligent Systems XX (Proc. of AI-2003), pages
295–308. Springer-Verlag, December 2003.

[5] M. Garagnani. A Framework for Hybrid and Analogical Planning. In I. Vlahavas and D. Vrakas, editors,
Intelligent Techniques for Planning. Idea Group, Inc., 2004. (to appear).

[6] M. Garagnani and Y. Ding. Model-based planning for object-rearrangement problems. In Proceedings of
13th International Conference on Automated Planning and Scheduling (ICAPS’03) - Workshop on PDDL,
pages 49–58, Trento, Italy, June 2003.

[7] J. Glasgow, N.H. Narayanan, and B. Chandrasekaran, editors. Diagrammatic Reasoning. AAAI Press/The
MIT Press, Cambridge, MA, 1995.

[8] D. Harel. On Visual Formalisms. Communication of the ACM, 13:514–530, May 1988.

[9] Z. Kulpa. Diagrammatic representation and reasoning. Machine GRAPHICS & VISION, 3(1/2):77–103,
1994.

[10] V. Lifschitz. On the semantics of STRIPS. In M.P. Georgeff and Lansky, editors, Proceedigns of 1986
Workshop: Reasoning about Actions and Plans, 1986.

[11] D. Long and M. Fox. Automatic synthesis and use of generic types in planning. In S. Chien, S. Kamb-
hampati, and C.A. Knoblock, editors, Proceedings of the 5th International Conference on AI Planning
and Scheduling (AIPS’00), pages 196–205, Breckenridge, CO, April 2000. AAAI Press.

[12] D. McDermott, C. Knoblock, M. Veloso, D. Weld, and D. Wilkins. PDDL – the planning domain definition
language. Version 1.7. Technical report, Department of Computer Science, Yale University (CT), 1998.
(Available at www.cs.yale.edu/homes/dvm/).

[13] K. Myers and K. Konolige. Reasoning with analogical representations. In B. Nebel, C. Rich, and
W. Swartout, editors, Principles of Knowledge Representation and Reasoning: Proceedings of the Third
International Conference (KR92), pages 189–200. Morgan Kaufmann Publishers Inc., San Mateo, CA,
1992.

[14] J. Sowa. Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley, Reading,
MA, 1984.

