PROCESSABILITY THEORY EIN ANSATZ ZUR ERKLÄRUNG VON SPRACHERWERBSPROZESSEN

Manfred Pienemann
Universität Paderborn und Newcastle University, UK

FU Berlin, FB Philosophie \& Geisteswissenschaften 26.10.2010

Learnability Theory (Wexler \& Culicover) Three approaches

	Parameter Theory	Constructivism (e.g.J.Piaget)	Functionalism (Bates, MacWhinney)	
○ Target grammar	UG	not applied to language	only fragments	
○ Input	unsystematic	assimilation into schemata	aided by speech adjustments	
O Learning device	triggering of parameters	complex system self-organisat.	complex system Competition Mod.	
O Initial state	very rich UG	contains basic	no innate linguistic learning princ.	knowledge

Das logische Problem und
 Das Entwicklungsproblem

- The logical problem:

What is the source of linguistic knowledge?

- Nature: universal grammar
- Nurture: form-function relationships
- PT: unmarked alignment, PT-OT
o The developmental problem:
Why do learners follow universal paths of development?
- Nature: universal grammar
- Nurture: interaction
- PT: gradual development of processing resources

Conceptualiser

give (actor: Child) (beneficiary: mother)

Incremental language generation

Lexicon

The linearisation problem

Linearity

Text: The man rode off after he mounted the horse 2nd event 1st event

Morphology

Lexical-Functional Grammar (Bresnan 2001)

Hierarchy of processing resources

S-bar procedure		-	-	-	+
Sprocedure	-	simplified	simplified	inter- phrasal informat. exchange	inter- phrasal informat. exchange
Phrasal procedure (head)	-	-	phrasal informat. exchange	phrasal informat. exchange	phrasal informat. exchange
category procedure (lexical category	-	lexical informat	lexical informat.	lexical informat.	lexical informat.
word/	+	+	+	+	+
lemma					

Processing hierarchy and
ESL morphemes

- 1 Lexical morpheme
- 2 Phrasal morpheme
o 3 Inter-phrasal morpheme
o 1 Lexical morpheme: "walk-ed"
Lexical entry

```
walked V
(PRED) = "WALKED" (SUBJ) (OBJ)
(TENSE) = PAST
```


Processing hierarchy and ESL morphemes

2 Phrasal morpheme: "has walk-ed"
Lexical entry

walked V		PRED = "WALKED" (SUBJ) (OBJ)
		PARTICIPLE = PAST
		INF = +
	V	PRED = "HAVE, V-COMP (SUBJ)"
		TENSE = PAST
		AUX = +
		V-COMP PARTICIPLE = PAST
		V-COMP INF = $\mathrm{C}+$

Processing hierarchy and ESL morphemes

3 Inter-phrasal morpheme "Peter own a dog"

Developmental features: English

Implicational analysis of a cross-sectional corpus (Johnston 1997)

Stage Structure		$71: 4$	1:2		32:3		5 2:	2 2:	12:5	$52: 4$	1:86	2.6	1:1
6 Cancel Inversion	/		/	1	1		/	/	1	-	-	+	\pm
5 Aux2nd/ Do2nd	/	/	-	-	+	/	+	+	+	+	+	+	/
3 sg -s	-	-	-	-	+	+	+	+	+	+	+	+	+
4 Y/N Inversion	/		+	+	+	/	+	+	+	+	/	+	/
Particle verbs	/	-	+	+	+	+	+	+	+	+	+	+	+
Copula Inversion	1		+	+	+	/	+	+	+	+	+	+	l
3 Neg+V	+	+	+	+	+	+	+	+	+	+	+	+	+
Do Front.	/	/	+	/	/	1	+	+	+	+	/	+	/
Topi	+	+	+	+	+	/	+	+	+	+	+	+	+
ADV	+	/	+	+	+	+	+	+	+	+	/	+	+
2 SVO	+	+	+	+	+	+	+	+	+	+	+	+	+
Plural	+		+	+		+	+	+	+	+	+	+	+
poss. pro	+		+	+	+	+	+	+	+	+	+	+	+
object pronoun	+	+	+			+	+	+	+	+	+	+	\pm
1 single words		+	/	/	/	+	/	/	/	/	/	+	/

L2 syntatic development in Germanic languages (selected structures)

PT level	ESL syntax	Swed. L2 syntax	GSL syntax (Meisel et al.)
6 •	Cancel INV	---	V-Final
5 •	Do2nd, Aux2nd	V2	V2
$4 \cdot$	Y/N inv, copula inv	---	V-Front
3 •	ADV-1st WH-1st Do-1st,	ADV-1st WH-1st	ADV 1st, WH-1st
2 •	SVO	SVO	SVO
1 •	invariant for	invariant forms	invariant forms

(R3a) $\quad S^{\prime} \rightarrow(V)$
S

$$
\left\{\begin{array}{l}
\text { aux }=\mathrm{c}+ \\
\text { ROOT }=\mathrm{c}+ \\
\text { SENT MOOD }=\mathrm{c} \text { INV }
\end{array}\right\}
$$

(R2a) $\quad S^{\prime \prime} \rightarrow\left(\begin{array}{l}\text { XP) } \\ \begin{array}{l}\text { wh }=c+ \\ \text { adV }=c+ \\ \text { SENT MOOD }=\text { INV }\end{array}\end{array}\right\}$
(R2) $\quad S^{\prime} \rightarrow(X P)$
S/ event

$$
\left\{\begin{array}{l}
\text { wh }=\mathrm{c}+ \\
\mathrm{adv}=\mathrm{c}+
\end{array}\right\}
$$

(R1a) Event \rightarrow agent action ...
(R1)
$S \rightarrow N P_{\text {subj }} V\left(N P_{\text {obi }}\right)(A D J)(S)$

Recall:
 ESL development (unification)

	Processing proceduresL2 process		Syntax	morphology	
0	6	sub. clause procedure	main and sub clause	cancel INV	
0	5	S-procedure	inter-phrasal inform.	INV	SV-agreement
0	4	VP-procedure	phrasal inform.	SEP	
0	3	phrasal procedure	phrasal inform.	ADV	phrasal agreement
0	2	category procedure lexical information	canonical order	past-ed	

The case of German L1 and L2 acquisition

(Clahsen 1987; Meisel 1991)

PT level	L1 German	Examples	L2 German	Examples
6	---	[dass] $]_{\text {comp }}[\text { Mama }]_{\text {suus }}$ nach Hause [geht],	V-final	[dass] $]_{\text {comp }}[\text { Peter }]_{\text {sues }}$ nach Hause [gehen]v [hat]v
5	V2	[Dann] $]_{\text {Aov }}[\text { geht }]_{V}$ [Mama] $]_{\text {suan }}$ nach Hause	INV	$[\text { Dann }]_{\text {Aov }}[\text { hat }]_{v}[\text { Peter }]_{\text {suev }}$ nach Hause [gehen],
4	---		SEP	${ }^{*}[\text { Dann }]_{\text {ave }}[\text { Peter }]_{\text {suav }}[\text { hab }]_{v}$ nach Hause [gehen]v
3	---		ADV	${ }^{*}[\text { Dann }]_{\text {oov }}[\text { Peter }]_{\text {suav }}[\text { geh }]_{v}$ nach Hause
2	SOV	[Mama] $]_{\text {suss }}$ hause [geht] ${ }_{\text {v }}$	SVO	Peter geh Italien
1				

Lexical Mapping

(1) Peter saw a dog.
(2) see
<experiencer, theme>
SUBJ
OBJ
(3) Yesterday Peter saw a dog.
(4) see <experiencer, theme, locative>

(5) A dog was seen by Peter.
(6) seen <experiencer, theme>

Lexical Mapping Theory 1

- A-structure consists of a predicator and its argument roles;
give < agent beneficiary experiencer >
- Argument roles follow their markedness in the thematic hierarchy

Thematic hierarchy

agent $>$ beneficiary $>$ experiencer/ goal $>$ instrument $>$ patient/ theme $>$ locative

Lexical Mapping Theory 2

- Argument roles are mapped onto grammatical functions:

argument roles

agent > beneficiary > experiencer/ goal > instrument > patient/ theme >locative markedness hierarchy

grammatical functions

TOP, FOC, SUBJ, OBJ, OBJo, OBLo, XCOMP, COMP, ADJUNCTS

Lexical Mapping Theory 3

- Two dichotomies apply to grammatical functions
(1) argument functions vs. non-argument functions
(2) discourse functions vs. non-discourse functions

Lexical Mapping Theory 4

Principles of mapping a-structures onto grammatical functions

- DEFAULT: If the given role is the first argument of the predicator and it is the most prominent role classified [-o], it has to be mapped onto the subject function.
- If the given a-structure does not contain such a role, a non-agentive role marked [-r] has to be mapped onto the subject function. All other roles are mapped onto the lowest compatible grammatical function on the following hierarchy:

SUBJ > OBJ, OBJ0 > OBL0
(cf. Bresnan 2001, 309).

Linearity and lexical mapping 1

Linear mapping

Linearity and lexical mapping 2

Non-linear mapping: argument structure

What did he buy?

buy $<$ agent	theme $>$	argument roles
FOCUS SUBJECT	OBJECT	gramm. functions
WH-word NPSUBJ	$[\ldots]$	

Linearity and lexical mapping 3

Non-linear mapping: f-structure

FOCUS SUBJ TENSE MOOD PRED OBJ

The initial hypothesis of syntax (= UNMARKED ALIGNMENT).

XP-adjunction in interlanguage

Correspondence principle:
Constituents adjoined to XP are non-argument functions TOP, FOC or ADJUNCT

XP-adjunction in interlanguage

Correspondence principle:
Constituents adjoined to XP are non-argument functions TOP, FOC or ADJUNCT

Lexical mapping in WH-questions

The Lexical Mapping Hypothesis

a - to f - structure mapping

Non-default, complex mapping.

Non-default mapping. (single clause) \uparrow

Default mapping, ie.
Most prominent thematic role is mapped onto SUBJ.

Structural outcomes

Complex predicates e.g. Causative (in Romance languages, Japanese, Finnish ...) \uparrow

Passive (Japanese)
Exceptional verbs
\uparrow

Canonical Order

The TOPIC Hypothesis

Discourse principle	c - to f - mapping	structural outcomes
Topicalization of core arguments	$\mathrm{TOP}=\mathrm{OBJ}$	The TOP function is assigned to a core argument other than SUBJ.
\uparrow	\uparrow	\uparrow
XP adjunction	$\mathrm{TOP}=\mathrm{ADJ}$	Initial constituent $=$ adjunct or a FOCUS WH-word. TOPIC differentiated from SUBJECT
\uparrow	\uparrow	\uparrow
Canonical Order	$\begin{aligned} & \text { SUBJ = } \\ & \text { default TOP } \end{aligned}$	TOPIC and SUBJECT are not differentiated.

Predictions for ESL development

Process. procedure	unification	morphology	syntax	mapping
$6 \cdot$ subordinate clause. main and sub clause procedure			Cancel INV	
5-S-procedure	inter-phrasal - S	SV agreement $(=3 \mathrm{sg}-\mathrm{s})$	Do2nd, Aux2nd TOPI	1st argument $=$ core argumen $\neq[-\mathrm{o}]$ uncertainty
$4 \cdot$ VP-procedure	inter-phrasal - VP	tense agreement	Y / N inv, copula inv	
$3 \cdot \mathrm{NP}-$ procedure	phrasal	NP agreement	ADV 1st, WH-1st Do-1st,	- 1st argument = discourse fn or ADJUNCT, rest=direct mapping
$2 \cdot$ category procedure	lexical morphemes	plural possessive pro	canonical order	$\begin{aligned} & \text { 1st argument } \\ & =\text { SUBJ } \\ & \text { (default) } \end{aligned}$
1- word/ lemma	'words‘	invariant forms	single word	no mapping

Processability Theory and L1 transfer

Pienemann, Di Biase, Kawaguchi \& Håkansson 2002

1. L1 transfer is developmentally moderated.
"One can transfer only structures which one can process."
= L1 transfer may occur when the given structure can be processed, not before.

2. The initial hypothesis of syntax is created by the unmarked alignment of argument structure, functional structure and constituent structure and on the structure of the L2. (Based on LFG and processing constraints)

Processability constrains L1-transfer

Name	SVO	advSVO	V2
Gelika (Year 1)	+	-	-
Emily (Year 1)	+	-	-
Robin (Year 1)	+	-	-
Kennet (Year 1)	+	-	-
Mats (Year 2)	+	-	-
Camilla (Year 2)	+	-	-
Johann (Year 1)	+	+	-
Cecilia (Year 1)	+	+	-
Eduard (Year 1	+	+	-
Anna (Year 1)	+	+	-
Sandra (Year 1)	+	+	-
Erika (Year 1)	+	+	-
Mateus (Year 2)	+	+	-
Karolin (Year 2)	+	+	-
Ceci (Year 2)	+	+	-
Peter (Year 2)	+	+	-
Johan (Year 2)	+	+	+
Zandra (Year 2)	+	+	+
Zofie (Year 2)	+	+	+
Caro (Year 2)	+	+	+

	SVO	advSVO	V2
Swedish	+	-	+
German	+	-	+
English	+	+	

The effect of 30 minutes‘ exposure to L2 Swedish with L1 German

	SVO	advSVO	V2
Swedish	+	-	+
German	+	-	+
English	+	+	-

			Swedish	Imitation		
Informant	SVO	*adv SVO	V 2	$\mathrm{~L} 2=\mathrm{V} 2 ?$	before? of V 2	
C03	+	14	-	-	-	16
C05	+	25	-	-	-	14
C07	+	-	-	-	-	10
C04	+	-	-	-	-	20
C01	+	30	-	+	+	30
C02	+	15	-	+	+	15
C06	+	13	-	+	-	9

Outlook: What PT can do

- Universal matrix for L2 development,
- Cross-linguistically valid,
- Basis for study of L1 transfer,
- Basis for the comparison of L1, L2, SLI etc
- Basis for L2 assessment \rightarrow Rapid Profile
- Basis for automatic profiling (Bi-jar Lin)
- Basis for measuring bilingual development,
o Basis for the teachability hyopthesis.

Rapid Profile: setup

Rapid Profile: observation form

Rapid Profile II - Observation

The architecture of AutoProfiling

